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Abstract
Non-local boundary conditions have been considered in theoretical high-energy
physics with emphasis on one-loop quantum cosmology, one-loop conformal
anomalies, Bose–Einstein condensation models and spectral branes. In the
present paper, for the first time in the literature, the Wightman function,
the vacuum expectation values of the field square and the energy–momentum
tensor are investigated for a massive scalar field satisfying non-local boundary
conditions on a single and two parallel plates. The vacuum forces acting on
the plates are evaluated. Interestingly, suitable choices of the kernel in the
non-local boundary conditions lead to forces acting on the plates that can be
repulsive for intermediate distances. It is then possible to obtain a locally stable
equilibrium value of the interplate distance stabilized by the vacuum forces.

PACS numbers: 03.70.+k, 04.62.+v

1. Introduction

In recent years, non-local boundary conditions in quantum physics have been considered for
at least three main purposes:

(i) As part of the attempt of obtaining a consistent picture of one-loop quantum cosmology
[1, 2] and in the course of investigating one-loop conformal anomalies for fermionic
fields [3].

(ii) Spectral boundary conditions for Laplace-type operators on a compact manifold with
boundary are partly Dirichlet, partly (oblique) Neumann conditions, where the partitioning
is provided by a pseudodifferential projection; they are of interest in string and brane theory
[4, 5].
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(iii) As part of the investigation of bulk and surface states in Bose–Einstein condensation
models [6].

In the latter case, following the work in [6], it is useful to consider a simple example given
by the Laplacian acting on scalar functions on the two-dimensional plane. More precisely,
given the function q which is both Lebesgue summable and square-integrable on the real line,
i.e. q ∈ L1(R) ∩ L2(R), one defines [6]

qR(x) ≡ 1

2πR

∞∑
l=−∞

eilx/R

∫ ∞

−∞
e−ily/Rq(y) dy. (1.1)

The function qR is, by construction, periodic with period 2πR, and tends to q as R tends
to ∞. On considering the region

BR ≡ {x, y : x2 + y2 � R2}, (1.2)

one studies the Laplacian acting on square-integrable functions on BR , with non-local boundary
conditions given by

[u;N ]∂BR
+

∮
∂BR

qR(s − s ′)u(R cos(s ′/R),R sin(s ′/R)) ds ′ = 0. (1.3)

In polar coordinates, the resulting boundary-value problem reads

−
(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

)
u = Eu, (1.4)

∂u

∂r
(R, ϕ) + R

∫ π

−π

qR(R(ϕ − θ))u(R, θ) dθ = 0. (1.5)

For example, when the eigenvalue E is positive in equation (1.4), the corresponding
eigenfunction is

ul,E(r, ϕ) = Jl(r
√

E) eilϕ, (1.6)

where Jl is the standard notation for the Bessel function of first kind of order l ∈ Z. On
denoting by q̃ the Fourier transform of q, and inserting (1.6) into the boundary condition (1.5),
one finds an equation leading, implicitly, to the knowledge of the positive eigenvalues, i.e.

[
√

EJ ′
l (R

√
E) + Jl(R

√
E)̃q(l/R)] = 0. (1.7)

The solutions of equation (1.7) which decay rapidly away from the boundary are the surface
states, whereas the solutions which remain non-vanishing are called bulk states [6].

In the extension to gauge fields, non-local boundary conditions along the lines of
equation (1.3) make it possible to improve the ellipticity properties of the boundary-value
problem, by working with suitable symbols of the boundary operator, as shown in [7]. The
price to be paid, however, is that the gauge-field and ghost operators become pseudo-differential
because the gauge-fixing functional is no longer a local functional of the gauge field [7].

On the other hand, in the field-theoretical analysis of macroscopic quantum effects such as
the Casimir effect, an essential point is the relation between the mode-sum energy, evaluated
as the sum of zero-point energies for each normal mode, and the volume integral of the
renormalized energy density. For scalar fields with general curvature coupling it has been
shown that, in the discussion of this question for the Robin parallel plates geometry, it is
necessary to include in the energy a surface term concentrated on the boundary [8]. In
subsequent work, by using variational methods, the first author of the present paper has
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derived an expression of the surface energy–momentum tensor for a scalar field with a general
curvature coupling parameter in the general case of bulk and boundary geometries [9].

As a next step, we have been therefore led to consider the role of non-local boundary
conditions in the course of studying the vacuum expectation value of the energy–momentum
tensor as well as the Casimir effect itself. For this purpose, section 2 studies the Wightman
function and Casimir densities for a single plate, while section 3 is devoted to vacuum densities
in the region between two parallel plates. Concluding remarks are made in section 4.

2. Wightman function and Casimir densities for a single plate

We consider a real scalar field ϕ(x) with general curvature coupling parameter ζ satisfying
the field equation

(∇µ∇µ + m2 + ζR)ϕ = 0, (2.1)

where R is the scalar curvature for a (D + 1)-dimensional background spacetime, and ∇µ is the
covariant derivative operator. For special cases of minimally and conformally coupled scalars
one has ζ = 0 and ζ = ζc ≡ (D − 1)/4D, respectively. Our main interest in this paper will
be the Wightman function, the vacuum expectation values (VEVs) of the field square and the
energy–momentum tensor induced by a single and two parallel plates in Minkowski spacetime.
For this problem the background spacetime is flat and in equation (2.1) we have R = 0. As
a result the eigenmodes are independent of the curvature coupling parameter. However, the
local properties of the vacuum such as energy density and vacuum stresses depend on this
parameter.

In this section, we consider the properties of the vacuum for the geometry of a single
plate. We will use rectangular coordinates xµ = (t, x1 = x, x‖), where x‖ = (x2, . . . , xD)

denotes the coordinates parallel to the plate. We assume that the plate is located at x = 0 and
the field obeys a non-local boundary condition similar to equation (1.3), i.e.

nν∂νϕ(t, x, x‖) +
∫

dx′
‖f (|x‖ − x′

‖|)ϕ(t, x, x′
‖) = 0, x = 0, (2.2)

where nν is the inward-pointing normal to the boundary and the conditions on the function f

will be specified below. For definiteness we consider the region x > 0 for which nν = δν
1 .

It can be seen that, for this type of boundary condition, the scalar product (ϕ1, ϕ2)t for a
given spatial hypersurface t = const, defined in the standard way (see, for instance, [10]) does
not depend on the choice of hypersurface �. Indeed, the corresponding difference for two
hypersurfaces t = t1 and t = t2, from the field equation, by using the Stokes theorem, reads

(ϕ1, ϕ2)t2 − (ϕ1, ϕ2)t1

= i
∫ t2

t1

dt

∫
dx‖nν[ϕ∗

1 (t, 0, x‖)∂νϕ2(t, 0, x‖) − ϕ2(t, 0, x‖)∂νϕ
∗
1 (t, 0, x‖)].

(2.3)

By virtue of the boundary condition (2.2), the integral on the right-hand side vanishes. For
the standard local Robin boundary conditions, the normal derivative of the field at a given
point on the boundary is determined by the value of the field at the same point. The non-local
boundary condition (2.2) states that the normal derivative at a given point depends on the
values of the field at other points on the boundary. The properties of the boundary are codified
by the function f . In some sense, the situation here is similar to that in electrodynamics for
the spatial dispersion of the dielectric permittivity, when one considers the relation between
the displacement and the electric field. In electrodynamics, the spatial dispersion leads to the
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dependence of dielectric permittivity on the wave vector. Analogously, our non-local boundary
conditions lead to the dependence of the coefficient F in the eigenfunctions on the wave vector
k‖ (see below).

As the first stage in the investigation of local quantum effects we consider the positive-
frequency Wightman function. The VEVs of the field square and the energy–momentum
tensor can be obtained from the Wightman function in the coincidence limit of the arguments
with an additional renormalization procedure. Instead of the Wightman function we could take
any other two-point function, but we choose the Wightman function because it also determines
the response of particle detectors in a given state of motion. To evaluate the positive-frequency
Wightman function we use the mode-sum formula

〈0S |ϕ(xµ)ϕ(x ′µ)|0S〉 =
∑

k

ϕ∗
k(xµ)ϕk(x

′µ), (2.4)

where |0S〉 is the vacuum state corresponding to the geometry of a single plate. For this
geometry, the normalized eigenfunctions satisfying the boundary condition (2.2) are given by

ϕk(x
µ) = eik‖x‖−iωt

√
2D−1πDω

cos(kx + α), (2.5)

where ω ≡
√

k2 + k2
‖ + m2, 0 � k < ∞, and the function α = α(k, k‖) is defined by the

relation

e2iα ≡ ik − F(k‖)
ik + F(k‖)

, (2.6)

with k‖ = |k‖|. In the last formula we have defined the Fourier transform

F(k‖) ≡
∫

dx‖f (|x‖|) eik‖x‖

= (2π)
D−1

2

k
D−3

2
‖

∫ ∞

0
du u

D−1
2 f (u)JD−3

2
(uk‖), (2.7)

where Jν(x) is the Bessel function of first kind of order ν. In the case F(k‖) > 0 there is also
a purely imaginary eigenvalue k = iF(k‖) with the normalized eigenfunction

ϕ
(im)
k‖ (xµ) =

√
F(k‖)

(2π)D−1ω(im)
exp(ik‖x‖ − iω(im)t − xF(k‖)), (2.8)

and ω(im) ≡
√

k2
‖ + m2 − F 2(k‖), k2

‖ � F 2(k‖) − m2. These eigenfunctions correspond to the
bound states of the quantum field. The occurrence of purely imaginary eigenvalues is proved
by starting from the eigenfunctions, which depend on x according to A1 eikx + A2 e−ikx , with
constants Ai . From the boundary condition one finds eventually

A1(ik + F(k‖)) = A2(ik − F(k‖)).

In addition to the solutions with both Ai �= 0, this equation has indeed solutions A1 = 0,

ik = F(k‖) and A2 = 0, ik = −F(k‖).
To escape the instability of the vacuum state, in the discussion below we will assume

that the function (2.7) satisfies the condition F(k‖) �
√

k2
‖ + m2. For the convergence of the

integral in (2.7) we need to have the behaviour f (u) = o(u1−D/2) in the limit u → ∞ and the
behaviour f (u) = o(u1−D) in the limit u → 0, by virtue of standard summability criteria at
infinity and at the origin, respectively. For the discussion below of various asymptotic cases it
is useful to have the behaviour of the function F(k‖) for large and small values of the argument.
For large values of k‖, by using the asymptotic expansion of the Bessel function for large values



Casimir effect with non-local boundary conditions 5237

Table 1. Examples of kernel function f in the boundary condition, with Fourier transform F.

f (x) F (y)

f0(
x2+x2

0

) D−1
2 −η

f0
2η+1π

D−1
2

�
(

D−1
2 −η

) (
x0
y

)η

Kη(x0y)

f0 e−η

√
x2+x2

0 (2πx0)
D
2 ηf0

KD/2(x0

√
η2+y2)

π(η2+y2)D/4

f0
e
−η

√
x2+x2

0√
x2+x2

0

2(2πx0)
D
2 −1f0

KD/2−1(x0

√
η2+y2)

(η2+y2)D/4−1/2

of the argument, from (2.7) we see that F(k‖) ∼ o
(
k

3−D
2

‖
)

as k‖ → ∞. For small values of k‖
two subcases should be distinguished. For the case of functions f (u) ∼ o(u1−D), u → ∞,
on using the expression for the Bessel function for small values of the argument, one finds to
leading order

F(k‖) ≈ F0 ≡ 2π
D−1

2

�
(

D−1
2

) ∫ ∞

0
du uD−2f (u), k‖ → 0. (2.9)

For the functions f (u) ∼ u−β, u → ∞, with D/2 − 1 < β < D − 1, by introducing in (2.7)
a new integration variable y = uk‖ and replacing the function f (y/k‖) by its asymptotic
expansion for large values of the argument, one finds F(k‖) ∼ k

β+1−D

‖ , k‖ → 0. In the
table 1, we present examples of the kernel function f in the boundary condition (2.2) with the
corresponding Fourier transforms F. These functions depend on three parameters f0, x0 and η.

The positive-frequency Wightman function is obtained by substituting the
eigenfunctions (2.5) and (2.8) into the mode-sum formula (2.4). It can be presented in
the form

〈0S |ϕ(xµ)ϕ(x ′µ)|0S〉 = 〈0M |ϕ(xµ)ϕ(x ′µ)|0M〉 +
∫

dk‖
(2π)D

exp(ik‖(x‖ − x′
‖))

×
∫ ∞

0
dk

exp(iω(t ′ − t))

ω
cos[k(x + x ′) + 2α] +

∫
dk‖

(2π)D−1

F(k‖)
ω(im)

θ(F (k‖))

× exp(ik‖(x‖ − x′
‖) − (x + x ′)F (k‖) + i(t ′ − t)ω(im)), (2.10)

where |0M〉 stands for the vacuum state in Minkowski spacetime without boundary, with
〈0M |ϕ(xµ)ϕ(x ′µ)|0M〉 the corresponding Wightman function, and θ is the Heaviside step
function. The last term on the right of this formula is the contribution of bound states. Note
that, by using the definition for α, the cos function in the integrand can be also presented in
the form

cos(ky + 2α) = k2 − F 2(k‖)
k2 + F 2(k‖)

cos ky − 2kF (k‖)
k2 + F 2(k‖)

sin ky. (2.11)

The integrals in (2.10) over the angular part of the vector k‖ can be explicitly evaluated with
the help of the formula already used in (2.7). In the coincidence limit from formula (2.10) one
finds the VEV of the field square

〈0S |ϕ2|0S〉 = 〈0M |ϕ2|0M〉 +
SD−1

(2π)D

∫ ∞

0
dk‖ kD−2

‖

∫ ∞

0
dk

cos(2kx + 2α)

ω

+
SD−1

(2π)D−1

∫
dk‖ kD−2

‖
F(k‖)
ω(im)

θ(F (k‖)) e−2xF(k‖), (2.12)

where SD−1 = 2π(D−1)/2/�((D−1)/2) is the surface area of the unit sphere in D-dimensional
space. The last two terms on the right of this formula are induced by the plate. For points
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away from the boundary (x �= 0), these terms are finite and the divergences in the VEV of the
field square are contained in the first term only. Hence, here the renormalization procedure is
the same as that for the Minkowski spacetime without boundary.

To obtain an alternative form for the VEV of the field square, we write the cos function
in the second term on the right of (2.12) in terms of the exponential functions and rotate the
integration contour in the complex k-plane by the angle π/2 for the term with e2ikx and by the
angle −π/2 for the term with e−2ikx . We assume that the points ±i

√
k2
‖ + m2 and the poles

±iF(k‖) in the case F(k‖) > 0 are bypassed on the right by semicircles with small radii. In
such a way the following relation is obtained:∫ ∞

0
dk

cos(2kx + 2α)

ω
=

∫ ∞
√

k2
‖+m2

du
e−2ux√

u2 − k2
‖ − m2

u + F(k‖)
u − F(k‖)

− 2πF(k‖)
e−2xF(k‖)θ(F (k‖))√
k2
‖ + m2 − F 2(k‖)

. (2.13)

Now we see that the second term on the right of this formula cancels out the third term on the
right-hand side of formula (2.12) and we obtain

〈ϕ2〉sub = 〈0S |ϕ2|0S〉 − 〈0M |ϕ2|0M〉
= SD−1

(2π)D

∫ ∞

0
dk‖ kD−2

‖

∫ ∞
√

k2
‖+m2

du
e−2ux√

u2 − k2
‖ − m2

u + F(k‖)
u − F(k‖)

. (2.14)

The VEVs of the field square in the cases of Dirichlet and Neumann boundary conditions
are obtained from the general formula (2.14) in the limits F(k‖) → ∞ and F(k‖) → 0,
respectively. In these cases, the integrals are evaluated by introducing a new integration
variable v ≡

√
u2 − k2

‖ − m2 and passing to polar coordinates in the (k‖, v)-plane. This
simple calculation leads to the result

(〈ϕ2〉sub)Dirichlet = −(〈ϕ2〉sub)Neumann = − (m/x)
D−1

2

2Dπ
D+1

2

K(D−1)/2(2mx), (2.15)

where Kν(x) is the modified Bessel function of second kind. The VEV of the field square
induced by a single plate on the background spacetime R(D,1) × �, with an internal space �

and local Robin boundary condition, is investigated in [11] as a limiting case of the braneworld
geometry.

Having the Wightman function (2.10) and the VEV of the field square we can evaluate
the VEV of the energy–momentum tensor by making use of the formula

〈0S |Tµν |0S〉 = lim
x ′→x

〈0S |∂µϕ(xα)∂ ′
νϕ(x ′α)|0S〉 +

[(
ζ − 1

4

)
gµν∂α∂α − ζ∂µ∂ν

]〈0S |ϕ2|0S〉.
(2.16)

With the help of formulae (2.10) and (2.14) for the boundary-induced part the following result
is obtained (no summation over ν),〈
T ν

µ

〉
sub = 〈0S |T ν

µ |0S〉 − 〈0M |T ν
µ |0M〉

= SD−1δ
ν
µ

(2π)D

∫ ∞

0
dk‖ kD−2

‖

∫ ∞
√

k2
‖+m2

du
Aν(u, k‖) e−2ux√

u2 − k2
‖ − m2

u + F(k‖)
u − F(k‖)

, (2.17)
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where we have introduced the notations

A0(u, k‖) ≡ k2
‖ + m2 − 4ζu2, A1(u, k‖) = 0, (2.18)

Aν(u, k‖) ≡ (1 − 4ζ )u2 − k2
‖

(D − 1)
, ν = 2, . . . , D. (2.19)

For the evaluation of the T ν
ν components, with ν = 2, 3, . . . , we note that, from the problem

symmetry, one has T 2
2 = T 3

3 = · · · and hence

T 2
2 =

D∑
ν=2

T ν
ν

(D − 1)
.

For the sum in the last formula, the integrand contains the factor
D∑

ν=2

T ν
ν → −k2

‖ + u2(1 − 4ζ )(D − 1).

As we see, the vacuum stress in the direction perpendicular to the plate,
〈
T 1

1

〉
sub, vanishes.

This result could be also directly obtained from the continuity equation ∂ν

〈
T ν

µ

〉
sub = 0 for

the boundary-induced VEV of the energy–momentum tensor. It can be checked that the
tensor (2.17) is traceless for a conformally coupled massless scalar field. In the case of the
local boundary condition of Robin type the function F(k‖) is a constant and the expression
for the corresponding energy–momentum tensor is further simplified by introducing a new
integration variable v ≡

√
u2 − k2

‖ − m2 and passing to polar coordinates in the (k‖, v)-plane
as before (2.15). In particular, for the massless case we obtain the result given in [8]. Note
that in this case the VEV of the energy–momentum tensor vanishes for a conformally coupled
scalar field. For the non-local boundary condition, in general, this is not the case. Another
important difference is that, unlike the local case, for non-local boundary conditions, in general,〈
T 0

0

〉
sub �= 〈

T µ
µ

〉
sub (no summation over µ = 2, . . . , D). For Dirichlet and Neumann boundary

conditions, the vacuum energy–momentum tensor is further simplified by a method similar to
that used for the VEV of the field square, and one finds (no summation over µ)(〈
T µ

µ

〉
sub

)
Dirichlet = −(〈

T µ
µ

〉
sub

)
Neumann

= (m/x)
D+1

2

2Dπ
D+1

2

[
2D(ζ − ζc)KD+1

2
(2mx) + (4ζ − 1)mxKD−1

2
(2mx)

]
, (2.20)

µ = 0, 2, . . . , D. In the Dirichlet case the corresponding energy density is negative
everywhere for both minimally and conformally coupled scalars. The vacuum energy–
momentum tensor for a plate on the background spacetime R(D,1) × �, with an internal
space � and local Robin boundary condition is investigated in [16].

Now let us consider the limiting cases of the VEVs (2.14), (2.17). These VEVs diverge
on the boundary. Surface divergences are well known in quantum field theory with boundaries
and are investigated for various types of boundary geometries and boundary conditions (see,
for instance, [10, 12]). They result from the idealization of the boundaries as perfectly smooth
surfaces which are perfect reflectors at all frequencies. It seems plausible that such effects
as surface roughness, or the microstructure of the boundary on small scales can introduce a
physical cutoff needed to produce finite values of surface quantities. An alternative mechanism
for introducing a cutoff which removes singular behaviour on boundaries is to allow the
position of the boundary to undergo quantum fluctuations [13]. Such fluctuations smear out
the contribution of the high-frequency modes without the need to introduce an explicit high-
frequency cutoff. Note that in this paper we consider boundary-induced vacuum densities
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which are finite away from the boundary. We expect that similar results would be obtained
in the model where instead of externally imposed boundary condition the fluctuating field
is coupled to a smooth background potential that implements the boundary condition in a
certain limit [14]. In the problem under consideration, for the points near the plate, the
main contribution results from large values of u. To leading order we can omit F(k‖) in the
integrands and the VEVs behave as those for the Neumann boundary conditions, i.e.

〈ϕ2〉sub ≈ x1−D

(4π)
D+1

2

�

(
D − 1

2

)
,

〈
T µ

µ

〉
sub ≈ 2D(ζc − ζ )

(4π)
D+1

2 xD+1
�

(
D + 1

2

)
. (2.21)

For large distances from the plate the main contribution to the VEVs comes from small values
of u. It can be seen that, for a massless field or for a massive field with f (u) ∼ u−β ,
D/2 − 1 < β < D − 1, at large distances the VEVs behave as those for Dirichlet boundary
condition. For the case of massive field with f (u) ∼ o(u1−D), to leading order one has

〈ϕ2〉sub ≈ F0 + m

F0 − m
(〈ϕ2〉sub)Dirichlet, x → ∞, (2.22)

and a similar relation for the VEV of the energy–momentum tensor. Here F0 is defined by
relation (2.9).

We have done numerical calculations for the components of the vacuum energy–
momentum tensor by taking, for example, the kernel function

f (x) ≡ f0 e−ηx. (2.23)

The corresponding Fourier transform F(k‖) is obtained from the second line of the table given
earlier in the limit x0 → 0, i.e.

F(k‖) = ηF1(
1 + k2

‖
/
η2

)D/2 , (2.24)

with the notation F1 ≡ 2D−1π
D
2 −1�(D/2)f0/η

D . In figure 1, we have presented the vacuum
energy density (full curves) and T 2

2 -stress (dashed curves) as functions on ηx for various values
of the parameter F1 (numbers near the curves) for a minimally coupled D = 3 scalar field. The
energy density is positive for the region near the plate and is negative at large distances from
the plate, having the negative minimum for some intermediate distance. The corresponding
curves for the energy density of the conformally coupled scalar field are presented in
figure 2. In this case the T 2

2 -stress is related to the energy density by the traceless condition:〈
T 2

2

〉
sub = −〈

T 0
0

〉
sub

/
2. Note that, for the case of a conformally coupled massless scalar

field with local boundary condition, the corresponding vacuum energy–momentum tensor
vanishes.

3. Vacuum densities in the region between two parallel plates

3.1. Eigenfunctions

In this section, we investigate the VEVs for the geometry of two parallel plates. We assume that
the plates are located at x = aj , j = 1, 2 and the field obeys non-local boundary conditions

nν
(j)∂νϕ(xµ) +

∫
dx′

‖ fj (|x‖ − x′
‖|)ϕ(x ′µ) = 0, x = aj , (3.1)

where nν
(j) is the inward-pointing unit normal to the boundary at x = aj . Here we consider

the general case when the kernel functions fj determining the properties of the boundaries
are different for the plates. The VEVs in the regions x < a1 and x > a2 coincide with
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Figure 1. Single-plate-induced vacuum densities 〈T 0
0 〉sub/η

D+1 (full curves) and 〈T 2
2 〉sub/η

D+1

(dashed curves) as functions of ηx for a minimally coupled massless scalar in D = 3 in the case
of kernel function (2.23). The numbers near the curves are the values of the parameter F1 defined
in the paragraph after formula (2.24).

Figure 2. Single-plate-induced vacuum energy density 〈T 0
0 〉sub/η

D+1 as a function of ηx for a
conformally coupled massless scalar in D = 3 in the case of kernel function (2.23). The numbers
near the curves are the values of the parameter F1 defined in the paragraph after formula (2.24).
The vacuum stress 〈T 2

2 〉sub is expressed through the energy density by the traceless condition.

the corresponding quantities for a single-plate geometry and are investigated in the previous
section. Here we consider the region between the plates with nν

(j) = (−1)j−1δν
1 . In this

region, the corresponding eigenfunctions are presented in two equivalent forms corresponding
to j = 1, 2, i.e.

ϕk(x
µ) = β(k, k‖) eik‖x‖−iωt cos[k|x − aj | + αj ], (3.2)
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where αj = αj (k, k‖) is defined by the relation

e2iαj (k,k‖) ≡ ik − (−1)j−1Fj (k‖)
ik + (−1)j−1Fj (k‖)

, (3.3)

with the definition of Fourier transform Fj (k‖) similar to equation (2.7), i.e.

Fj (k‖) ≡
∫

dx‖ fj (|x‖|) eik‖x‖

= (2π)
D−1

2

k
D−3

2
‖

∫ ∞

0
du u

D−1
2 fj (u)JD−3

2
(uk‖). (3.4)

The corresponding eigenvalues z = ka, a = a2 − a1, are solutions of the following
transcendental equation:

(z2 − c1c2) sin z + (c1 + c2)z cos z = 0, (3.5)

where the coefficients cj are defined by the relations

cj ≡ (−1)j−1aFj (k‖). (3.6)

Equation (3.5) is obtained by bearing in mind that the x-dependence in the eigenfunctions
has the form A1 eikx + A2 e−ikx . The boundary conditions (3.1) lead therefore to the linear
homogeneous system

(F1 + ik) eika1A1 + (F1 − ik) e−ika1A2 = 0, (3.7)

(F2 + ik) eika2A1 + (F2 − ik) e−ika2A2 = 0. (3.8)

Non-trivial solutions for A1 and A2 exist if and only if equation (3.5) holds. The expression
for the coefficient β(k, k‖) in (3.2) is obtained from the normalization condition:

β−2(ka, k‖) = (2π)D−1aω

[
1 +

sin(ka)

ka
cos(ka + 2αj )

]
. (3.9)

The eigenvalue condition (3.5) has an infinite set of real zeros which we will denote by z = λn,
n = 1, 2, . . . . In addition, depending on the values of the coefficients cj , this equation has
two or four complex conjugate purely imaginary zeros (see, for instance, [8]) ±iyl, yl > 0.

3.2. Wightman function

Substituting the eigenfunctions (3.2) into the corresponding mode-sum formula, for the
positive-frequency Wightman function in the region between two plates one finds

〈0|ϕ(xµ)ϕ(x ′µ)|0〉 =
∫

dk‖ eik‖(x‖−x′
‖)

∑
z=λn,iyl

eiω(t ′−t)

β2(z, k‖)
cos(zxj + αj ) cos(zx ′

j + αj ), (3.10)

where |0〉 is the vacuum state in the region between the plates and we use the notations

xj ≡ |x − aj |
a

, x ′
j ≡ |x ′ − aj |

a
. (3.11)

The summation over the eigenvalues λn, iyl can be done by using the formula∑
z=λn,iyl

h(z)

1 + cos(z + 2α1) sin z/z
= −1

2

h(0)

1 − c−1
1 − c−1

2

+
1

π

∫ ∞

0
dz h(z)

+
i

π

∫ ∞

0
dt

h(t eπ i/2) − h(t e−π i/2)
(t−c1)(t−c2)

(t+c1)(t+c2)
e2t − 1

− πθ(cj )

2cj

[gj (cj eπ i/2) + gj (cj e−π i/2)],

(3.12)
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where

gj (z) ≡ (
z2 + c2

j

)
h(z). (3.13)

Formula (3.12) is derived in [8] as a special case of the generalized Abel–Plana summation
formula [15]. As a function h (with first-order poles at z = ±icj ) we take

h(z) ≡ eiω(t ′−t)

aω
cos(zxj + αj ) cos(zx ′

j + αj ), ω ≡
√

z2/a2 + k2
‖ + m2, (3.14)

where the function αj = αj (z/a, k‖) is defined by formula (3.3). By using the relation (from
equation (2.11))

cos(y + 2αj ) = z2 − c2
j

z2 + c2
j

cos y − 2zcj

z2 + c2
j

sin y, (3.15)

it can be seen that

gj (cj eπ i/2) + gj (cj e−π i/2) = 2c2
j

eiω(im)(t ′−t)

aω(im)
e−cj (xj +x ′

j ). (3.16)

Moreover, by making use of the definition for αj we see that e2iαj (0,k‖) = −1, and hence
cos(2αj (0, k‖)) = −1. This implies in turn that h(0) = 0. The resulting Wightman function
from (3.10) is found to be

〈0|ϕ(xµ)ϕ(x ′µ)|0〉 = 〈0S |ϕ(xµ)ϕ(x ′µ)|0S〉j +
4

(2π)D

∫
dk‖ eik‖(x‖−x′

‖)

×
∫ ∞

a
√

k2
‖+m2

dt
cosh(txj + α̃j ) cosh(tx ′

j + α̃j )

(t−c1)(t−c2)

(t+c1)(t+c2)
e2t − 1

×
cosh

[
(t − t ′)

√
t2/a2 − k2

‖ − m2
]√

t2 − k2
‖a2 − m2a2

, (3.17)

where the function α̃j = α̃j (t, k‖) is defined by the relation

e2α̃j ≡ t − cj

t + cj

, (3.18)

and 〈0S |ϕ(xµ)ϕ(x ′µ)|0S〉j is the Wightman function for a single plate located at x = aj . On
taking the coincidence limit, for the VEV of the field square we obtain the formula

〈0|ϕ2|0〉 = 〈0S |ϕ2|0S〉j +
4SD−1

(2π)D

∫ ∞

0
dk‖ kD−2

‖

×
∫ ∞

a
√

k2
‖+m2

dt
cosh2(txj + α̃j )√
t2 − k2

‖a2 − m2a2

[
(t − c1)(t − c2)

(t + c1)(t + c2)
e2t − 1

]−1

, (3.19)

where 〈0S |ϕ2|0S〉j is the corresponding VEV for the geometry of a single plate at x = aj and
is investigated in the previous section. The surface divergences on the plate at x = aj are
contained in this term. The second term on the right of formula (3.19) is finite at x = aj and
is induced by the second plate located at x = aj1 , j1 = 1, 2, j1 �= j . This term diverges at
x = aj1 . The corresponding divergence is the same as that for the geometry of a single plate
located at x = aj1 .
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3.3. VEV of the energy–momentum tensor and vacuum forces

The vacuum expectation value of the energy–momentum tensor is evaluated by formula (2.16)
with the vacuum state |0〉. By taking into account formulae (3.17) and (3.19), for the region
between the plates one finds (no summation over ν)

〈0|T ν
µ |0〉 = 〈0S |T ν

µ |0S〉j + δν
µ

2SD−1

(2π)D

∫ ∞

0
dk‖kD−2

‖

×
∫ ∞

a
√

k2
‖+m2

fjν(t, k‖, x) dt√
t2 − k2

‖a2 − m2a2

[
(t − c1)(t − c2)

(t + c1)(t + c2)
e2t − 1

]−1

, (3.20)

where 〈0S |T ν
µ |0S〉j is the vacuum energy–momentum tensor for the geometry of a single plate

located at x = aj , and the second term on the right is the part of the energy–momentum tensor
induced by the presence of the second plate. In formula (3.20), we have defined

fj0(t, k‖, x) ≡ k2
‖ + m2 − t2/a2 +

(
k2
‖ + m2 − 4ζ t2/a2

)
cosh(2txj + 2α̃j ), (3.21)

fj1(t, k‖, x) ≡ t2/a2, (3.22)

fjν(t, k‖, x) ≡ − k2
‖

(D − 1)
−

[
k2
‖

(D − 1)
+ (4ζ − 1)

t2

a2

]
cosh(2txj + 2α̃j ), (3.23)

with ν = 2, 3, . . . , D. It can be easily checked that the vacuum energy–momentum tensor
is traceless for a conformally coupled massless scalar field. As we could expect from the
problem symmetry, the vacuum stresses in the directions parallel to the plates are isotropic.
Note that the T 1

1 -component of the energy–momentum tensor is uniform. This also follows
from the continuity equation for the VEV of the energy–momentum tensor. In particular, the
T 1

1 -stress is finite on the plates and determines the vacuum force acting per unit surface of the
plate:

p = −〈0|T 1
1 |0〉 = −2SD−1

(2π)D

∫ ∞

0
du uD−2

×
∫ ∞

√
u2+m2

t2 dt√
t2 − u2 − m2

[
(t − F1(u))(t + F2(u))

(t + F1(u))(t − F2(u))
e2at − 1

]−1

. (3.24)

When the functions Fj (u) = const, this formula can be simplified by introducing a new
integration variable v ≡ √

t2 − u2 − m2 and passing to polar coordinates in the (u, v) plane.
After integrating over the angular part one finds the formula

p = −21−Dπ−D/2

�(D/2)

∫ ∞

m

dt
t2(t2 − m2)

D
2 −1

(t−F1)(t+F2)

(t+F1)(t−F2)
e2at − 1

. (3.25)

For a massless scalar field this result coincides with the formula obtained in [8]. The VEVs
of the field square and the energy–momentum tensor for the geometry of two parallel plates
on the background spacetime R(D1,1) × � with an internal space � and local Robin boundary
conditions are investigated in [11, 16]. The vacuum forces for Dirichlet and Neumann
boundary conditions are the same and are obtained from (3.25) as special cases with Fj = ∞
and Fj = 0, respectively. These forces are attractive for all interplate distances.

Now we turn to the discussion of the general formula (3.24) for the vacuum forces
in the limiting cases corresponding to small and large interplate distances. For this it is
convenient to introduce a new integration variable v ≡ √

t2 − u2 − m2 as above and to pass
to polar coordinates (r, θ) in the (u, v) plane. For small distances the main contribution to the
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Figure 3. Vacuum pressure on the plate, p/ηD+1, as a function of ηa for a massless scalar in
D = 3 in the case of the kernel functions (3.26) with η1 = η2 and F

(2)
1 = 10. The numbers near

the curves are the values of the parameter F
(1)
1 defined in the paragraph after formula (2.24).

r-integral comes from large values of r. From the asymptotic behaviour of the functions
Fj (u) for large values of the argument described in section 2, the functions Fj (u) in the
coefficient of e2at may be omitted and, to leading order, the corresponding forces coincide
with the vacuum forces in the case of Neumann boundary conditions and are attractive. For
large distance between the plates the main contribution to the integral results from small values
of r and two subcases should be distinguished. For a massless scalar field or for a massive
field with kernel functions fj (u) ∼ u−βj ,D/2 − 1 < βj < D − 1, u → ∞, the terms with
t in the coefficient of e2at may be omitted and the vacuum forces coincide with those for the
Dirichlet case and are attractive. In the second subcase, corresponding to the kernel functions
fj (u) ∼ o(u1−D), u → ∞, to leading order the vacuum forces are given by expressions
which are obtained from (3.24) by the replacements t ± Fj (u) → m ± Fj0 in the coefficient
of e2at , where the constants Fj0 are defined by formulae similar to (2.9) with the replacements
f (u) → fj (u).

We have evaluated numerically the vacuum forces acting on the plates in the case of the
kernel functions

fj (x) ≡ f0j e−ηj x . (3.26)

The corresponding Fourier transforms Fj (k‖) are given by formulae obtained from
equation (2.24) by the replacements F1 → F

(j)

1 , η → ηj . The parameters F
(j)

1 are defined
by the formulae obtained from the corresponding expression for F1 in the paragraph after
formula (2.24) by the replacements η → ηj , f0 → f0j . In figure 3 we have plotted the
vacuum pressure on the plate as a function on ηa for a massless scalar in D = 3 in the case of
the kernel functions (3.26) with η1 = η2 ≡ η and F

(2)
1 = 10. The numbers near the curves are

the values of the parameter F
(1)
1 . For the values F

(1)
1 � −1.08 the vacuum pressure is negative

for all interplate distances and the corresponding vacuum forces are attractive. For the values
F

(1)
1 > −1.08, there are two values of the distance between the plates for which the vacuum

forces vanish. These values correspond to equilibrium positions of the plates. For the values
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of the distance in the region between these positions the vacuum forces acting on plates are
repulsive. Thus, the left equilibrium position is unstable and the right one is locally stable.

4. Concluding remarks

In this paper, we have investigated the positive-frequency Wightman function, the VEVs of
the field square and the energy–momentum tensor for a scalar field with non-local boundary
conditions on a single and two parallel plates in Minkowski spacetime. For the case of a
single-plate geometry, we have considered the boundary condition of the form (2.2), where
the kernel function f (x‖) describes the properties of the boundary. The VEVs of the physical
quantities bilinear in the field are determined by the Fourier transform F(k‖) of this function.
By evaluating the corresponding mode-sum, we have presented the Wightman function as the
sum of a Minkowskian part without boundary and boundary induced parts, formula (2.10).
The last term in this formula corresponds to the contribution of bound states. The boundary-
induced part in the VEV of the field square is obtained in the coincidence limit of the arguments
of the Wightman function and is given by formula (2.14). The VEV of the energy–momentum
tensor is obtained by acting with the corresponding second-order differential operator on
the Wightman function and taking the coincidence limit. This VEV is determined by
formula (2.17). The vacuum stress in the direction orthogonal to the plate vanishes, and
hence the corresponding vacuum force is zero.

Unlike the case of local boundary conditions, in the non-local case the vacuum
energy–momentum tensor does not vanish for a conformally coupled massless scalar
field. Another important difference is that for non-local boundary conditions, in general,〈
T 0

0

〉
sub �= 〈

T µ
µ

〉
sub, µ = 2, . . . , D.

As in the case of local boundary conditions, the energy density and the vacuum stresses
diverge on the surface of the plate. For a nonconformally coupled scalar field the leading
term in the corresponding asymptotic expansion is the same as that for Neumann boundary
condition. As an example, in figures 1 and 2 we have plotted the vacuum energy density and
the vacuum stress as functions of the distance from the plate for a choice of kernel function f

given by (2.23).
In section 3, we have considered the geometry of two parallel plates with boundary

conditions (3.1). For the region between the plates the corresponding eigenvalues are solutions
of equation (3.5), where the coefficients cj are determined by the Fourier transforms of the
kernel functions fj (x‖) in the boundary conditions. The evaluation of the corresponding
Wightman function is based on a variant of the generalized Abel–Plana summation formula,
equation (3.12). The application of this formula allowed us to extract from the VEVs the parts
resulting from the single plate and to present the part induced from the second plate in terms of
integrals exponentially convergent for points away from the boundary. The Wightman function
is presented in the form (3.17). The VEVs of the field square and the energy–momentum tensor
are obtained from the Wightman function and are determined by formulae (3.19) and (3.20).
The vacuum stress in the direction orthogonal to the plates is uniform. This stress determines
the vacuum forces acting on the plates. The corresponding effective pressure is given by
formula (3.24).

For small and large distances between the plates the vacuum forces are attractive. For
intermediate distances the nature of the vacuum forces depends on the functions in the boundary
conditions (3.1). For the example (3.26), we have shown that, depending on the parameters,
the forces acting on the plates can be repulsive for intermediate distances (see figure 3). In this
case it is possible to have a locally stable equilibrium value of the interplate distance stabilized
by the vacuum forces.
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As far as we know, the previous work on non-local boundary conditions for the Casimir
effect had instead considered spectral boundary conditions for spinor fields in spherically
symmetric cavities [17], and hence our results with the non-local boundary conditions (2.2)
and (3.1) for scalar fields are entirely original. From the point of view of bosonic string theory,
a non-local Casimir effect is studied in [18], but of a completely different nature as compared
to our work, since one there deals with a non-local Lagrangian.
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